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J .  Phys. A :  Gen. Phys.. Vol. 5 ,  January 1972. Printed in Great Britain 

Finite difference solution of the partial-wave 
Schrodinger equation 

M S STERN?: and A E A WARBURTONS 

Centre for Computer Studies, University of Hull, Hull, U K  
4 Department of Applied Mathematics. Unibersity of Hull, Hull, Ut( 

MS received 5 July 1971 

Abstract. A method is de\eloped for the numerical determination of' bound starch ,ind t h c  
eigenvalues of the Lippmann-Schwinger kernel f o r  any local interaction. The eigenvalue\ 
of the scattering kernel are analytically continued from negative energies to positive enetgie. 
by means of Pade approximants. The method is applied to calculations on lob energ) 
neutron-proton scattering. 

1. Introduction 

In recent years there has been a considerable interest in the calculation of three-body 
scattering amplitudes via the Faddeev equations. In order to perform such calculations 
one must be able to compute two-particle scattering amplitudes both on and off the 
energy shell (Faddeev 1961, Lovelace 1964, Bierter and Dietrich 1967a, 1967b). 

By expressing the partial-wave Schrodinger equation in finite difference form we 
have developed a method of determining binding energies and the eigenvalues of the 
Lippmann-Schwinger kernel for any local potential. A knowledge of the eigenvalues of 
the scattering kernel is usually required when the two-body off-shell partial-wave T 
matrix is evaluated from an eigenfunction expansion (Weinberg 1963, Wright and 
Scadron 1964, Warburton and Stern 1969). 

In a previous paper (Warburton and Stern 1969) we presented a method of computing 
the eigenvalues q ( k 2 )  of the Lippmann-Schwinger kernel for local interactions of the 
form 

( k z  is the energy in the centre of mass frame.) The q(k2)  were represented by asymptotic 
expansions at high energies and these expansions were summed by the use of Pade 
approximants at low energies. The method could only find those eigenvalues which 
possessed the Coulomb high energy limit 

1 
k 

q(kZ) 'c - 

In the case of potentials of the form (1.1) which are either purely attractive or purely 
+Now at Nuclear Studies Section. Computing Branch, Central Electricity Generating Board. 85 Park Street. 
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repulsive all the v](k2) have this high energy behaviour. However, when interactions of 
the form (1.1) contain both attractive and repulsive regions, only one set of their eigen- 
values possesses the high energy limit (1.2). 

The finite difference solution of the Schrodinger equation, which will be described 
in the following sections, does not restrict us to potentials ofthe form (1.1) and eigenvalues 
with the high energy behaviour (1.2). It should enable us to determine bound states and 
the q(k2) (irrespective of any particular high energy behaviour) of any analytic local 
interaction. 

In $ 2 the partial-wave Schrodinger equation is expressed in finite difference form. 
The resulting equations enable us to find only approximate values of binding energies 
because the boundary condition at infinity cannot be exactly applied. In $ 3  the 
Schrodinger equation is transformed in such a way that it is possible to impose both of 
the boundary conditions exactly in the resulting finite difference solution, thereby 
enabling bound states to be determined more accurately than with the method of $ 2. 
The method of $ 3 also enables us to compute the q(k2)  at negative energies. Numerical 
results are presented for various Yukawa and exponential potentials. 

In $ 4 the negative energy v] (as determined by the method of $ 3) are fitted by means of 
Pade approximants. These approximants are then used to analytically continue the 
eigenvalues to positive energies through the upper half kZ plane. 

In 9 5 we apply the techniques developed in the previous two sections to calculations 
on low energy neutron-proton scattering in the triplet and singlet S states. 

2. The finite difference solution 

Binding energies and the q(k2) are determined from the partial-wave Schrodinger 
equation 

which is subject to the boundary conditions 

u(r) 'v r '+l  a s r - 0  

and (2.2) 

u(r) = exp(ikr) a s r + c c  

where we take Im k 2 0, corresponding to the k2 plane cut along the positive real 
axis. 

By setting 

r, = nh un = 4rn) for n = 0, 1,2,3, .  . . (2.3) 
where h is small (note that uo = 0) we obtain 

+ O(hZ) %+ 1/2-%-  I / Z  

h 
u'(r,) N 

and 
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Thus, by substituting (2.3) and (2.4) into equation (2.1) we find that the differential equa- 
tion is reduced to an infinite system of homogeneous linear equations 

(2 .5)  

where n = I ,  2 , 3 ,  , . . , Obviously, it is a simple matter to impose the boundary condition 
at the origin since U,, = 0, but, on the other hand, the second of the boundary conditions 
(2.2) can only be satisfied approximately when the system (2.5) is truncated at ti = .I4 
for M finite and sufficiently large. The assumption that the wavefunction vanishes 
at large r is a fairly good approximation at negative energies, that is, when k is restricted 
to the positive imaginary axis in the complex k plane. 

For specified values of M and h we can employ the system of equations (2.5) to 
determine the energy eigenvalues k’ of the potential V ( r ) / v ( k z )  by solving for the eigen- 
values of the tridiagonal symmetric matrix formed by the coefficients of U,. U,, and 
U,+ on the left hand side. 

Now q ( k 2 )  = 1 whenever an attractive potential V(r )  forms a physical bound state 
with energy k 2  < 0. Hence, any physical energy eigenvalues yielded by the system of 
equations (2.5) will be real and negative whilst all unphysical values will be real and 
positive definite (since a real symmetric matrix has only real eigenvalues). In tables 1 
and 2 we present results for the S wave bound state values of k 2  obtained from equations 
(2.5), with various values of the step length h and order of matrix M ,  for a few attractive 

Table 1. S wave bound state values of k’ for the potential k’(rJ = A exp( - r ) , r .  as determined 
from the finite difference solution (2.5) with h = 0.1. .1.I gives the order of the matrix and 
,Y labels the bound states. 

- 3.816632 -0.9740 ~. - 0,9741 _. -0.9741 - 

- 5,868286 -3.8391 - 3.8391 -3,8391 ~- 

- 7.89661 5 - 8,4679 - 0.0459 - 8.4679 -0.0800 - 8.4679 -0,0827 
-9.914714 - 14.7040 -0.5231 - 14.7040 -0.5253 - 14.7040 -0 5253 

Table 2. S wdve bound state values of L 2  for the potential V ( r )  = A exp( -!) !. ds deter- 
mined from the finlte difference solution (2 5 )  with h = 0 05 M gives the order of the 
matrix and N labels the bound states 

-3.816632 -0,9595 ~~ - 0,9928 ~~ - 0.9934 .. . 

- 3,9583 .. . - 5.868286 - 3.9577 ~~~ -3.9583 - 

-7.896615 -8,8589 - -8.8589 -0.0135 -8.8589 -0.0889 
-9,914714 - 15.6470 -0.3598 - 15,6470 -0,5536 - 15.6470 -0,5624 

Yukawa potentials of the form V(r )  = A exp( - r)/r. These results can be compared with 
the exact binding energies, displayed in table 3, which were obtained by means of the 
Pade approximant method described in our previous paper (Warburton and Stern 



Finite diference Schrodinger equation 115 

1969). It is immediately obvious that the results obtained from the matrix eigenvalue 
method described above are only approximations to the exact bound states. The errors 
arise mainly from the fact that the boundary condition at infinity is not applied exactly 
when the system of linear equations (2.5) is truncated to finite order M. 

Table3. Exact S wave bound state values ofk' for the potential V ( r )  = A exp( - r ) / r ,  Nlabels 
the bound states 

A 

N -3,816632 -5.868286 -7.896615 -9,914714 

1 - 1~0000 -4.0000 -9.0000 - 1643000 
- ~ - 0.0943 - 0.5754 2 

In the next section equation (2.1) will be transformed in such a way that it will be 
possible to impose both of the boundary conditions (2.2) exactly in the resulting finite 
difference scheme, thereby enabling bound states to be determined more accurately 
than with the method developed in this section. 

3. Transformation of the Schrodinger equation 

The transformation 

X r = -  
1-x  

maps the interval 0 < r < 03 on to the interval 0 < x < 1. The partial-wave Schrodinger 
equation (2.1) takes the form 

(3.2) 
x2 

(1 k 2 - l ( l + l ) - - -  

which satisfies the boundary conditions 

u = O a t x = O a n d x =  1. (3.3) 

We shall now establish a finite difference solution of this differential equation by setting 

x, = nh = 4 X n )  f o r n = 0 , 1 , 2  , . . . ,  M + l  

so that 

1 
M + l  

h = -  U* = 0 = U W + l .  (3.4) 

We immediately see that both of the boundary conditions (3.3) have been applied exactly 
in contrast to the situation that arose in the previous section. The first and second 
derivatives of the wavefunction at the point x, are given by 

+ O ( h 2 )  U, + 1/2 -U, - 1/2 +O(h2)  = U, + 1 -U, - 1 

h 2h 
u'(x,) = 
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and 

By substituting (3.4) and (3 .5 )  into equation (3 .2)  we obtain the finite system of homo- 
geneous linear equations 

( 1  - X,)3(X, - 1 - h)  
h2  

(1 - .X,)~(.X, - 1 + h )  
!I 

- U , ,  , = k%,, t- (3.61 

where I I  = 1,2.  3 , .  . . ~ M .  Once again the energy eigenvalues k z  of the interaction L' rrik'i 
are to be computed by solving the matrix eigenvalue problem but on this occasion the 
matrix of coefficients on the left hand side of (3.6) is nonsymmetric. It should be noted 
that the finite difference solution (3.6) is a more accurate representation of the Schrti- 
dinger equation than the solution (2.5) because no truncation of the system oflinear equa- 
tions has occurred in (3.6).  From (3.4) it can be seen that the step length in (3.6) depends 
on the order of the matrix used to determine the energy eigenvalues whilst in (2.5) the 
step length is a free parameter. 

In table 4 we present results for the S wave bound states of the Yukawa potentials 
considered in the previous three tables (setting q equal to unity). I t  can be seen that these 
results are much closer to the exact bound states than those obtained from equations 
(2.5).  

Table4. S wave bound state values oi'k' for the potential V ( r )  = A exp( - rl ,  I'. as determined 
from the finite difference solution (3.6). A4 gives the order of the matrix and :V labels the 
bound states 

- 1~0001 -3,816632 - 1,0005 - - 1~0002 
- 5,868286 - 3.9997 - - 3.9999 - - 4~0000 
- 7,896615 - 8,9944 - 04949 - 8,9980 .- 0.0945 - 8.9995 - 0.0943 
-9.914714 - 15.9800 -0.5771 - 15.9930 --0.5761 - 15.9980 - -0 .57S f i  

- 

Of course, one should use the Pade approximant method developed in our previous 
paper (Warburton and Stern 1969) to locate bound states of Yukawa potentials and of 
other interactions of the form (1.1) (provided they possess attractive cores) because it is 
more accurate and very much faster than the finite difference method. The latter ap- 
proach can be adopted when the former method cannot be applied. One such case is 
the exponential potential which is not of the form (1.1). In tables 5 and 6 we display 
S wave and P wave bound state values of k2 for various exponential potentials of the 
form V(r)  = A exp( - Y). From these two tables and the previous one it can be seen that 
equations (3.6) yield results of at least three significant figure accuracy with matrices of 
order M = 60 to 100. Matrices of order 200 do, of course, lead to results of higher 
accuracy. 
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Table 5. S wave bound state values of k 2  for the potential V ( r )  = A exp( - r ) ,  as determined 
from the finite difference solution (3.6). M indicates the order of the matrix and N labels 
the bound states 

- 2  -0.02005 - -0.01998 -- -0,01995 - 

- 4  -0.31708 - -0.31682 ~~ 
-0.31672 ~ 

- 6  -0,82358 - -0.82315 -~ -0.82297 - 

- 8  - 1.4583 -0,00208 - 1.4577 -0.00199 - 1.4574 -0.00194 
- 9  -1.8112 -0.02481 - 1.8105 -0.02448 - 1.8102 -0.02434 

-10 -2.1837 -0.07055 -2.1829 -0,06997 -2.1825 -0.06972 

Table 6. P wave bound state values of k 2  for the potential V ( r )  = A exp( - r ) ,  as determined 
from the finite difference solution (3.6). M indicates the order of the matrix 

A M = 60 ‘W = 100 M = 200 

- 8  - 0,07607 - 0,07584 - 0,07574 
-9 -0.19166 -0.19132 -0,19117 
- 10 -0.33475 -0.33431 -0.33412 

In passing, we would like to point out that it has been shown (Massey and Mohr 
1935, Stern 1969, pp 5 G 3 )  that the exact S wave bound states of the attractive exponen- 
tial potential V(r)  = - A  exp( -p), with A > 0, can be found from the roots of the 
equation 

L”(5) = 0 (3.7) 

where the left hand side is a Bessel function of order -11 = -2ik/p. 
The finite difference scheme (3.6) can also be employed to compute the eigenvalues 

q(k2) of a potential V(r) .  The procedure is as follows. By substituting various real values 
of q into the system of equations we can determine whether there are any energy eigen- 
values k 2 (  < 0) for the interaction V(r)/q. After a sufficient number of points have been 
found in the (7, k 2 )  plane, where k 2  is real and negative, the curve passing through these 
points can be fitted by means of Pade approximants, as described in the following 
section. These approximants can then be used to analytically continue the q(k2) of the 
potential under consideration from negative energies to positive energies through the 
upper half k 2  plane. 

4. Curve fitting and analytic continuation by Pade approximants 

It is supposed that a function f(z), which is known to be finite at z = 0, has the asympto- 
tic behaviour 

f(z) 2i 2 - t ,  ( t  = 0, 1,2,3, .  . .) (4.1) 
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where z = X + iY. The function can then be represented by [n  + t ,  n] Pade approximants 
(Baker 1965) 

(4.2) 

in which it is convenient to adopt the arbitrary normalization 

q O  = 1 .  (4.3) 

If the value of f ( z )  is known at (2n + t + 1) points on the real axis, we can set 

(4.4) 

where,j = 1,2,3, .  . . ,2n+ t+  1. Thus, the coefficients p ,  and 4, can be determined from 
the system of (2n + t + 1) linear equations 

(4.5) 

After the polynomial coefficients have been found the function can be analytically 
continued from the real axis into the complex plane by means of the approximants (4.2) 
because the latter preserve analytic properties of functions such as poles, zeros. and 
cuts. 

We shall employ the results of the previous section and those obtained so far in 
this section for the purpose of computing q ( k z )  at both positive and negative energies. 
The accuracy of the method can be tested on the attractive Yukawa potential 
V ( r )  = -exp( - r ) / r ,  for which results are already known (Warburton 1966, Warburton 
and Stem 1969, Stern 1969). The eigenvalues of this interaction do, of course, exhibit the 
high energy limit (1.2). Tables 7 and 8 display S wave and P wave values of k determined 

Table 7. S wave values of k determined as a function of 9 from the finite difference solution 
(3.6) with a matrix of order 60 for the potential V ( r )  = - exp( - r ) / r .  Nlabels the order of 
eigenvalue 

N = l  N = 2  R! = 3 

‘I - i k  9 -ik 9 -ik 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.32 

23.537 0.01 
11.461 0.02 
7.3445 0.03 
5.2789 0.04 
4.0397 0.05 
3,2149 0.06 
2,6271 0.07 
2.1874 0.08 
1,8466 0.09 
1,5748 0.10 
1,3533 0.11 
1.1694 0.12 
1.0145 0.13 
0.88224 0.14 
0,76814 
0.66877 

22.587 0.01 13.677 
10.523 0.02 5.5511 
6.4258 0.03 2,8695 
4.3799 0.04 1.5621 
3.1598 0.05 0.80397 
2,3532 0.06 0.32040 
1,7828 
1.3599 
1.0352 
0.77917 
0.57290 
0.40394 
0,26363 
0.14583 
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Table 8. P wave values Jf k determined as  a function of ‘1 from the finite difference solution 
(3.6) with a matrix of order 60 for the potential V(r )  = -exp(-r)/r. N labels the order of 
eigenvalue 

N = l  N = 2  

II - ik  7 - ik  

0.005 
0.010 
0.015 
0.020 
0.025 
0,030 
0,035 
0.040 
0,045 
0.050 
0.055 
0,060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 

49.973 
23.241 
14.760 
10.562 
8.0535 
6.3851 
5.1950 
4,3030 
3.6092 
3.0537 
2.5984 
2.2178 
1,8943 
1,6152 
1.3710 
1.1543 
0.95938 
0.78112 

0.005 
0.010 
0.015 
0.020 
0,025 
0,030 
0,035 
0.040 
0,045 
0.050 

31,878 
13,935 
8.2963 
5.5200 
3.8692 
2,7756 
1.9971 
1.4123 
0,95165 
0.56785 

as a function of y~ from the finite difference solution (3.6) with a matrix of order 60. These 
results can be fitted by [n, n - 11 Pade approximants in the variable K = ik in order to 
analytically continue the various q ( k 2 )  from negative energies to positive energies. 
In tables 9 and 10 we present results for the eigenvalues computed at both positive and 
negative energies; in the S wave case [8,7] approximants were used for the first eigen- 
value, [?, 61 for the second, and [3,2] for the third whilst in the P wave case [9,8] ap- 
proximants were employed for the first eigenvalue and [5,4] for the second. In each 
case we observe that there is good agreement with previously obtained results, and 
therefore we feel confident that the method is reliable for finding eigenvalues which do 
not possess the Coulomb high energy limit (1.2). 

Table 9. The first three S wave eigenvalues computed by fitting [n, n - I] Pade approximants 
in the variable K = ik to the results of table 7 for the potential V ( r )  = -exp( - r ) / r  

~~~ 

N = l  N = 2  N = 3  

k Re q(k2)  Im q ( k 2 )  q( - k 2 )  Re q ( k 2 )  Im q ( k 2 )  q( - k 2 )  Re q ( k 2 )  Im q ( k 2 )  q( - k2) 

0.0 0.5949 0 0.5949 0.1552 0 0.1552 0.0697 0 0.0697 
0.1 04837 0.0780 0.5252 0.1541 0.0117 0.1444 0.0695 0.0036 0.0663 
0.2 0,5529 0.1468 0.4709 0,1511 0.0227 0.1352 0.0688 06071 0.0633 
0.5 0.4108 0.2630 0,3612 0.1344 0.0484 0.1141 0.0647 0.0164 0.0558 
1.0 0.2299 0.2732 0.2620 0.1013 0.0678 0.0912 0.0545 0.0260 06469 
2.0 0.0918 0.2002 0.1704 0.0569 0.0684 0.0658 0.0369 0.0315 0.0359 
5.0 0.0184 0.0958 0.0838 0.0158 0.0428 0.0363 0,0132 0.0250 . 0.0215 
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Table 10. The first two P wave eigenvalues computed by fitting [n, n - I ]  Pade approximants 
in the variable K = ik to the results of table 8 for the potential V ( r )  = -exp( - r ) ’ r  

~ 

,1 = 1 .\ = 2 

h Req(k2) Imq(k2) ‘I(- k 2 )  Req(hL) Imq(h2) q ( - L 2 )  

0.0 0.1 107 0 0.1 107 0,0566 0 0.0566 
0.1 0.11 I6 0.0005 0.1096 0.0571 0,0002 0,0561 
0.2 0.1140 0.0019 0,1074 0.0583 0.0012 0.0550 
0.5 0.1229 0.0169 0,0986 0,0607 0.0084 0.0509 
1.0 0.1093 0,0524 0,0839 0.0554 0.0209 0.0444 
2.0 0.0621 0,0665 0.0633 0.0384 0,0301 0.0350 
5.0 0,0165 0.0432 0,0360 0.0137 0.0248 0.0213 

We shall now turn our attention to the S wave eigenvalues of the exponential poten- 
tial V(r) = -exp(-r). It has been shown (Stern 1969) that these eigenvalues have the 
high energy behaviour 

1 
k 2 ‘  

q ( k 2 )  1. - (4.6) 

Table 11 contains values of k determined as a function of q from the finite difference 
solution (3.6) with a matrix of order 100. These results have been fitted by [n. I I  - 2j 

Table 11. S wave values of k determined as a function of I T  from the finite difference solution 
(3.6) with a matrix of order 100 for the potential V ( r )  = -exp( - r ) ,  N labels the order of 
eigenvalue 

N = 1 N = 2 

‘I - i k  ‘I - ik 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.1 1 
0.12 
0.1 3 
0.14 
0.1 5 
0.16 
0.17 
0.18 
0.19 

7.5030 
4,8513 
3,7019 
3.0278 
2.5739 
2.2427 
1.9880 
1.7846 
1.6176 
1,4775 
1,3578 
1.2542 
1,1634 
1,0830 
1.0113 
0,94682 
0.88844 
0.83529 
0.78666 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.1 1 
0.12 
0.1 3 

5,6647 
3.2246 
2.1890 

1.1948 
1,5915 

0,90895 
0,69163 
0,51997 
0,38045 
0.26451 
0.16644 
0,082292 
0,009847 1 
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approximants (in the variable K = ik) which have yielded the positive and negative 
energy values of q(k2)  displayed in table 12; [lo, 81 approximants were used for the first 
eigenvalue and [7,5] for the second. 

Table 12. The first two S wave eigenvalues computed by fitting [n, n -21 Pade approximants 
in the variable K = ik to the results of table 11 for the potential V(r )  = -exp( - r )  

N = l  N = 2  

k Req(k2) Imq(kz) q( -k2)  Req(k2) Imq(k2) q(-k2) 

0.0 0.6900 0 0.6900 0.1311 0 0.1311 
0.1 0.6537 0,1689 0.5450 0.1299 0.0148 0,1178 
0.2 0.5603 0,2993 0.4444 0.1258 0.0288 0,1064 
0.5 0.23 15 0.4033 0.2724 0.10 1 9 0.0608 0.08 1 3 
1.0 -0.0035 0.2630 0,1517 0.0543 0.0770 0.0565 
2.0 -0.0512 0.0955 0.0695 0.0054 0.0564 0.0327 
5.0 -0.0203 0.0154 0,0191 -0,0093 0.0158 0,0118 

At k = ip/4 the S wave eigenvalues of the interaction V ( r )  = - A  exp( - p r )  have 
the exact values (Stern 1969, pp 50-3) 

( N  = 1,2,3, .  . .) 4A 
(4.7) 

where N is the order of eigenvalue. This formula yields 0.4053 and 0.1013 for the first 
and second eigenvalues respectively when A = p = 1. The Pade approximants that 
were employed to compute the results in table 12 gave corresponding values of 0.4050 
and 0.1014 at the same energy. We are therefore confident that the values of q ( k 2 )  
presented in this table are accurate to at least three significant figures. 

In the following section the methods developed in this section and the previous one 
will be employed to calculate the eigenvalues of interactions which change sign. 

5. Neutron-proton scattering 

A process that has attracted considerable interest, both theoretical and experimental, 
is low energy neutron-proton scattering. As the masses of the particles are large when 
compared with the energies and momentum transfers involved in the scattering experi- 
ments, one tries to represent the interaction between the nucleons by means of a non- 
relativistic central potential. We assume that the tensor force and spin-orbit interaction 
can be safely ignored at energies below 310 MeV, the pion production threshold. 

For the triplet S state, Coester and Yen (1963) have proposed the double Yukawa 
potential 

4A exp( - 2pr) A exp( - p r )  
r 

- V ( r )  = 

( A  > 0) which has a repulsive core and an attractive outer region. The parameters A 
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and p are determined from the experimentally measured scattering length U and 
effective range r o .  When r is measured in fermi, k 2  = 1 corresponds to an energy of 
41.5 MeV in the centre of mass frame (or 83 MeV in the laboratory frame). This interac- 
tion has an infinite number of repulsive eigenvalues with the high energy limit q 1 1 'k 
and an infinite number of attractive eigenvalues with the high energy behaviour J I  5 1 k' 
We have determined the first eight repulsive eigenvalues (Warburton 1966, Stern 1969) 
by using the method developed in our previous paper (Warburton and Stern 1969) 
when A = 42.48 and p = 2.307. However, as mentioned earlier in this paper. that 
method cannot be employed to find the attractive eigenvalues which, therefore, will be 
computed with the aid of the equations derived in # 3 and 4. 

I t  is well known that the deuteron has a binding energy of about 2.22 MeV 
(k' = -0.05350). By substituting the potential (5.1), with the values of A and p specified 
in the previous paragraph, into the finite difference scheme (3.6) we find that matrices of 
order 60,100, and 200 yield binding energies of k 2  = - 0.05397, - 0.05366, and - 0.05352 
respectively for the deuteron. (The deuteron bound state is located by setting the first 
attractive a(k2)  to unity in (3.6).) 

We have employed the method developed in the previous two sections to calculate 
the first two repulsive and the first two attractive eigenvalues of the triplet S state 
interaction at both positive and negative energies. We find that the results, which are 
presented in tables 13 and 14, are in good agreement with those determined by other 
methods (Warburton 1966, Stern 1969). 

Table 13. The first two repuisive eigenvalues of the tripiet S state potential (5 .1 I 

.v = I ,I' = 2 
. ~. ~ ~ ~ 

k Req(k2) Imq(k2) q ( - k 2 )  Req(k2) Imq(k2) q ( - k L )  

0.0 - 12.33 0 - 12.33 -3.01 0 -3.01 
0.1 -12.33 -0.18 - 12.15 -3.01 -0.01 - 3.00 
0.2 - 12.34 -0.36 - 11.97 -3.02 - 0.02 - 2.99 
0.5 - 12.38 -0.95 - 11.41 - 3.04 -0.06 - 7.94 
1.0 - 12.35 -2.12 - 1033 -3.10 -0.15 - 2.85 
2.0 - 11.26 - 4.52 -9.06 -3.18 -0.52 - 2,64 
5.0 -6.12 -6.45 -6.31 -1.57 - 1.39 -2.1 1 

~~~~ 

Table 14. The first two attractive eigenvalues of the triplet S state potential (5.1 i 

N = l  N = 2 

0.0 1.331 0 1,331 0,160 0 0.160 
0.1 1.314 0,175 1.171 0.160 0,008 0,152 
0.2 1.262 0,341 1,038 0.159 0.016 0,145 
0.5 0,961 0,713 0,752 0,152 0.038 0.127 
1 .o 0,365 0,846 0.483 0,133 0.068 0.104 
2.0 -0.126 0.468 0.248 0.082 0.098 0,074 
5.0 -0,094 0.064 0,073 -0.007 0.066 0,034 
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We shall now turn our attention to the singlet S state potential (Mongan 1969) 

(5.2) 

where p := 0.7. This also has a repulsive core and an attractive outer region. ( k 2  = 1 
again corresponds to an energy of 41.5 MeV in the centre of mass frame.) The attractive 
and repulsive q(k2)  of this interaction have the same high energy limits as the correspond- 
ing eigenvalues of the potential (5.1). The leading eigenvalues, computed at both positive 
and negative energies, are displayed in table 15. The results obtained for the first repul- 
sive v(k2)1 are in close agreement with those found by using our earlier asymptotic 
expansion and Pade approximant method (Warburton and Stern 1969). 

6484.2 exp( - 7fir) - 1650.6 exp( - 4fir) - 10.463 exp( - fir) 
41.5pr V(r)  = 

Table 15. The leading repulsive and attractive eigenvalues of the singlet S state potential (5.2) 

Repulsive Attractive 

k Re q ( k 2 )  Im q ( k 2 )  q ( - k 2 )  Re q ( k 2 )  Im q ( k z )  q ( - k 2 )  

0.0 - 15.86 0 - 15.86 0.924 0 0.924 
0.1 - 15.86 -0.26 -15.60 0.908 0,127 0,809 
0.2 -15.87 -0.52 - 15.35 0,865 0,243 0,716 
0.5 - 15.86 - 1.34 - 14.59 0,650 0.476 , 0,520 
1.0 - 15.66 -2.86 - 13.44 0.275 0.563 0.338 
2.0 - 14.16 -5.67 -11.54 -0.068 0.339 0,177 
5.0 -7.91 -8.13 -8.07 -0.068 0.050 0.053 

In future work we hope to combine the methods developed in this paper and in our 
previous one (Warburton and Stern 1969) in order to compute the off-shell scattering 
amplitudes of the nucleon-nucleon interactions (5.1) and (5.2) (and also possibly of 
other local potentials which change sign). 

6. Conclusions 

The numerical methods described in this paper are suitable for calculating all the 
eigenvalues of the Lippmann-Schwinger kernel (at both positive and negative energies) 
and binding energies for any analytic local potential and orbital angular momentum 1. 
However, when dealing with interactions of the form (1.1) which are either purely attrac- 
tive or purely repulsive, one should use our asymptotic expansion and Pade approximant 
approach (Warburton and Stern 1969) since it is more accurate and very much faster 
than the finite difference solution. Our previous results should also be employed to 
determine the set of q(k2)  possessing the Coulomb high energy limit (1.2) when studying 
potentials of the form (1.1) which contain both attractive and repulsive regions. The 
finite difference method (combined with curve fitting and analytic continuation by 
Pad& approximants) may then be used to find the eigenvalues which exhibit other high 
energy limits. It is hoped that we shall be able to combine the methods developed in this 
paper and our previous one (Warburton and Stern 1969) in order to evaluate the off- 
shell partial-wave T matrix for physically ‘realistic’ interactions such as (5.1) and (5.2). 
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